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Abstract 

The existence of limit cycles in a mathematical model for a continuous fermentation 
process is investigated. Estimation of perimeters and the relative positions of limit cycles 
are also discussed. 

1. In t roduct ion 

Since the famous papers of Poincar6 (1881, 1882, 1885, 1886) and Van der Pol 
(1926), the problem of limit cycles has attracted more and more attention from mathe- 
maticians, physicists, chemists, biologists and other scientists and engineers. At the 
beginning of this century, David Hilbert made a famous speech on mathematical 
problems at the Intemational Mathematical Conference in Paris. In his speech, he listed 
twenty-three problems in the development of mathematics in this century as the most 
interesting and most important. Among the famous twenty-three Hilbert problems, the 
sixteenth is about limit cycles, that is, the maximum number of  limit cycles of  quadratic 
differential equations. Many years have passed. What happened to those problems? In 
1974, the American Mathematical Society invited many mathematicians around the 
world to a special conference on Hilbert problems. Two massive volumes of  titled 
proceedings, The Advances of Mathematics Due to the Hilbert Problems, were 
published. The solutions, discussions and developments were summarized one by one 
for all the twenty-three problems except for one. The exception was the sixteenth 
problem, which was only a copy of the original problem without a word added. From 
this we can see how necessary the study of limit cycles is (see, for example, [8]). 

Recently, a nonlinear mathematical model for a single species growing in a 
continuously stirred homogeneous fermentor was studied by Crooke et al. [1,2]. In [1] 
it was proved that a generally accepted model for fermentation could not exhibit any 
periodic solution if the substrate yield term in the model was constant. Also, it was 
shown numerically that when one allows the substrate yield to depend on the substrate 
concentration in the fermentor under certain conditions on the system parameters 
(~netic parameters, dilution rate, etc.), it is possible to have limit cycles in the cell 
concentration-substrate concentration phase plane. In [2], the Hopf bifurcation of  
solutions to the model was applied, with the assumptions of Monod kinetics and a 
variable yield term linearly dependent on the underlying substrate. 
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In particular, it was shown that the model possesses a one-parameter family of 
periodic solutions when certain system parameters of the model assume a specific ratio. 

However, since bifurcation results can only produce a "small" solution and deal 
with its properties locally, the global analysis for this model is still necessary. Further- 
more, in order to use the Hopf bifurcation theorem, the asymptotical stability of  the 
corresponding equilibrium point is required (see ref. [3], theorem 5.5.1, p. 212, or 
ref. [4]). Therefore, before applying the Hopf bifurcation theorem one should prove the 
stability of  (u o, v0) in the case e = 0, i.e. A/C = R, but this is not done in [2]. In addition, 
some computation in [2] needs to be modified (see eq. (9), p. 440). 

In this paper, we shall employ the thoery of qualitative analysis of differential 
equations to prove the existence of limit cycles in the continuous fermentation model. 
Since our proof will not need the assumptions of Monod kinetics and the yield term 
linearly dependent on the underlying substrate, the model studied in [2] is a special case 
of ours and will be used as an illustration of our theorem. Moreover, we shall derive 
estimations of the perimeters of the limit cycles by comparing the curvatures of 
closed orbits in the model, and consequently discuss the relative position of the limit 
cycles. Our results may be useful to experimentalists because results have shown that 
some experimental data suggest that fermentors can exist as oscillatory behavior (see, 
for example, [1]). 

2. The  model  

The following mathematical model works for a single species growing in a 
continuously stirred homogeneous fermentor which is continuously fed by a nutrient, 
and where the cells are continuously drawn off. 

dX 
- X ( # ( S ) -  D), X ( 0 )  = X*,  

dt 

ds X 
tcl "~ = D(SF - S )  y ( S ) # ( S ) ,  S(O) = S*. (2.1) 

Here, X(t)  denotes the concentration of the cells, S(t) the concentration of the 
substrate (nutrient), Y(S)  the cell-to-substrate yield (sometimes called the "yield co- 
efficient), #(S) the specific growth rate of the cells, S F the concencentration of the feed 
substrate, D the ratio of  the flow rate of the feed substrate to the volume of  the fermentor 
reacting medium, and t denotes time. 

In [2], the Monod kinetics 

/2(3)- #maxS (2.2) 
Ks  + S  

and the linearly dependent 
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Y(S) = A + BS (2.3) 

are assumed. By introducing the dimensionless variables, 

X S #max KS 
= - - ,  . . . .  , C= BSF, z=Dt ,  x SF Y SF' a= D ' b - S F  

applying (2.2) and (2.3), and then using t instead of "r, the model (2.1) is reduced to: 

dx )dr 
- -  = x  a y  1 - - =  l - y -  , ( 2 . 4 )  
dt y ' dt (b+ y)(A +Cy)  

where a, b, A, and C are positive constants [2]. 
The model that we consider is 

dx dy g(y) 
. . . . .  (2.5) x ( g ( y ) - l ) ,  dt 1 y F'Y ; x ' t  ) dt 

where g(y) = #(SFY ), F(y)  = Y(SFY ) which satisfy 

g(O)=O, g ' (y )>O,  F(y)>O,  F ' (y )>O,  f o r y > O .  (2.6) 

Clearly, (2.5) is a generalization of the model (2.4). Our discussion is on the 
region ~ = {(x ,y) lx> 0, y > 0}. 

. E x i s t e n c e  o f  l i m i t  c y c l e s  

The system (2.5) has two equilibrium points E~(0, 1) and E2(x*, y*), where 

y* = g- l (1) ,  x* = ( 1 - y * ) F ( y * ) .  (3.1) 

The Jacobian of the system (2.5) is 

Since 

J(x, y) = 

g(y) - 1, 

g(Y) 
F(y) '  

xg'(y) ,1 

-1 x(g(Y)  ]l" - 

(3.2) 



(3.3) 

( g ( 1 ) -  1, 0") 

J(O, 1 ) = /  g(1) - 1 ~ '  
~. F(1) '  

(0,  1) is a saddle point if 

g(1) < 1. 

Note that (3.4) also implies x* > 0. Then, both E 1 and  E 2 are in ~ .  
Since 

0 x*g'(y*), ") 
J(x*,y*)= . 1 _l_x.(g(y) ~ I' 

F(y*) \F(y) J ly =y'J 

(3.4) 

(3.5) 

the characteristic equation is 

Let 

(g(Y)l" IA.+x*g'(Y*) 
,,t,2+ 1 +X*\F(y))ly=y" F(y*) - 0.  ( 3 . 6 )  

El 

p= l+x'(g(Y) l' [ 
\F(y) y=y'" 

Clearly, E 2 is stable if P > 0 and unstable if P < 0. 
For the case where E2(x*, y*) is unstable, we will prove that there exists at least 

one limit cycle in ~.  To this end, we are going to construct an outer boundary of the 
Bendixson annular region (see fig. 1). 

y° . . . . . . . . .  M 

0 ~'X 
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Figure 1. 
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Let l~ be the line passing the saddle point E~(0, 1) with the slope - l /F (1 ) :  

11: x + F(1)y - F(1) = 0. (3.7) 

Let 12 be the perpendicular line to the x-axis passing M(F(1 ) (1 -y* ) ,  y*), the 
point of intersection of l~ and y = y*. 

Since there is no equilibrium point when y > 1, the following estimation is made 
only for 0 < y < 1: 

d/1 _ d X l d t  dt t~+F(1)d-~t  t~ 

g(y) 
= x ( g ( y ) - l ) + F ( 1 )  1 - y - x ~ - ~ )  

= F(1)(1 - y)(g(y) - 1) + F(1)(1 - y) - F(1)(1 - y)F(1)  - -  g(Y) 
F(y) 

F(1) 
= F ( 1 ) ( 1 - y ) g ( y )  1 F(y))  

< 0. (3.8) 

dl2 dx 

dt  dt  - x (g (y ) -  1)lx=F<l)<l_y. ) 

= F(1)(1 - y*)(g(y)-  1) < 0 (3.9) 

Furthermore, on the line segment ON, 

dy 
- - = 1 > 0 ,  
dt 

and x = 0 is a trajectory of (2.5). 
Therefore, OE1MNO constitutes an outer boundary of a Bendixson annular 

region. By the Poincar6-Bendixson theoreom, there exists at least one limit cycle 
surrounding the unstable equilibrium point E 2. 

The above argument can be summarized as: 

THEOREM 3.1 

Assume g(1) < 1 and, if 

1+  dy F y = y . > 0 ,  
(3.10) 
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then the equilibrium point E 2 ( x *  , y*) of the system (2.5) is stable; if 

~X'~y/~/I,:, ~0 (3.11) 

then E2(x*, y*) is unstable and there exists at least one limit cycle in (2.5) surrounding 

E 2 • 

For the model  (2.4), we have: 

T H E O R E M  3.2 

Assume a > b + 1 and let 

b ( a - a b - b -  1) 
R = (3.12) 

( a -  1 ) ( ( a -  1 )2 + b)" 

If A/C > R, then E 2 is stable. 
If A/C < R, then E 2 is unstable and the system (2.4) has at least one limit cycle 

surrounding E 2. 

Proof 

Let 

ay 1 
g ( y ) -  , F ( y ) -  

b + y  A + C y  

It is easy to see that the assumption (2.6) is satisfied, and 

X = 

y - 

Since 

( a -  b - 1 )(A a -  A + bC) 

( a -  1 )2 
b 

a - 1  

1 + x  * d  
dr  ( g )  y=y. 

( a -  b - 1 )(A a -  A + bC) 
= 1 +  

( a -  1)2 

(3.13) 

a(b + - -  )(a ~ ~ - ~ ( a  + + - -  

a - 1  a - l )  a - l \  cb I ~ c ( b )  a - 1  - ~ - 1  b + a - 1  

= 1 +  

( ~/~(A ~1 ~ b +  + - -  
a - 1  a - 1  

( a - b -  1) ( (a -  1)(Aa-A + C b ) - a b C )  
> 0  a b ( A a -  A + Cb) (3.9) 
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is equivalent to 

o r  

1+ 
( a -  b -  1)(a-  1) ( a -  b -  1)C 

ab a a -  A + Cb ' 

o r  

( ( a - 1 ) 2 +  b ) ( ( a - 1 ) C +  b ) >  a b ( a - b - 1 ) ,  

o r  

A a b ( a - b -  1 ) -  b ( (a -  1)2+b) 
(a -  1)~  > 

( a -  1) 2 + b 

A b ( a - a b - b -  1) 
- -  > 

C ( a -  1 ) ( (a -  1 )2 + b) = R. (3.14) 

Similarly, 

(g)l 1+ dy y=y" < 0  

is equivalent to 

A 
- - < R .  
C 

Thus, we complete the proof of theorem 3.2 by employing theorem 3.1. [] 

Note: As we mentioned in the beginning of this paper, the use of the Hopf 
bifurcation theorem needs the assumption of the asymptotical stability of E 2 for the case 
e = 0 or A/C = R. Unfortunately, this was not done in [2]. Thus, the analytical proof 
of the existence of limit cycles was still open. Now, it is completely solved by our 
theorem 3.2. 

4. Perimeters and relative positions of limit cycles 

In this section, by the comparison of curvatures, we are going to estimate the 
perimeters of the limit cycles of the model (2.5). Since there are experimental data to 
suggest that fermentors can exhibit oscillatory behavior [1], to estimate the perimeters 
of period orbits in the cell concentration-substrate phase plane may be useful to the 
biochemists. 
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Rewrite the system (2.5) as 

dx x ( g ( y ) -  1) 
- -  = = P ( x , y ) ,  
ds  ,[ g (Y )  ,2 

x 2 ( g ( y  ) - 1) 2 + (1 - y - ---;~, x ) 
V r t y )  

g (Y )  
dy 1 - y - F(y----)) x 

- = O ( x , y ) ,  (4.1) 
ds 

I g ( Y )  "2 x Z ( g ( y )  - 1 ) 2 + ( 1 - y -  F ( y )  x )  

where s is the length of  the arc. 

THEOREM 4.1 

Let C 1 and C 2 be two limit cycles of  (4.1) with curvatures tq(s) and ~2(s), 
respectively. Let 11 and l 2 be the perimeters of  C 1 and C 2. If 

then 

~¢1(s) > ~2(s) > O, (4.2) 

/1 -< 12 (4.3) 

P r o o f  

Suppose by proper coordinate transform the relative position of  C 1 
shown in fig. 2: 

2 

and C 2 is as 

Figure 2. 

Since K'l(s) and ~(s )  are positive, C 1 and C 2 are convex closed right-handed 
curves. Hence, the index of  C. is 1. That is, for i = 1, 2, 

l 
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af 
2---~ tci(s)ds= l. 

Cl 

Assume ll > 12. Then, 

12 11 

f lcl (s)ds = f lCl (S)ds + f lcl (S)ds 
Ci 0 12 

= I K'2 (s)ds.  
o 

Hen~,  

12 ll 

f (tCl (S) -  tc2(s))ds+ ~ tfl (S)ds = O. 
o 12 

(4.5) 

Since Iq(s) - ~c2(s) > 0, we have 

II 

f~cl (s)ds < 0, 
12 

(4.6) 

which is a designed contradiction to tel(S) > 0. [] 

Clearly, the curvature of the curves defined by (4.1) is 

(~Q p + ~Q Q) OP OP Q) 
tC(x,y) = (p2 + Q2)3/2 

The following corollary is useful for the estimation of the perimeters of limit 
cycles of (4.1). 

COROLLARY4.2 

If there exists r 1 and r 2 such that 

! > I~(x,y)l-> 1 ,  (4.8) 
rl r2 

then, for any limit cycle, its perimeter satisfies 
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2rcr 1 < 1 < 27rr 2. (4 .9)  

Now, for the relative position of  the limit cycles, we have: 

COROLLARY 4.3 

If  (4.8) holds, then all the limit cycles o f  (4.1) must be inside the circle with radius 
zcr 2 and the center  at the corresponding unstable equilibrium point E 2. 

The inner boundary can be constructed by the same technique as in [5]. 

The idea used in this section is useful for  many other models (for example,  the 

model  studied by Huang and Merrill [6,7]). 
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